
Packaging a new
toolchain
Angus Lees <gus@debian.org>

Rust!

● New programming language
● In the C/C++ end of town
● Built on LLVM
● Very close to Rust 1.0 release
● Rust compiler is written in Rust

○ Circular build dependency!

Challenges

● Bootstrapping the first package
● Bootstrapping new architectures
● x86_64-linux-gnu != x86_64-unknown-linux-gnu

● Rust is still a fast moving language
○ Need very narrow version of rustc to build next rustc

Compiler stages

stage0
Pre-existing compiler used to build stage1

stage1
Minimal compiler (no libraries, etc) used to build stage2

stage2
Full compiler used to build stage3

stage3
Full compiler distributed to users (ideally identical to stage2)

Bootstrapping the first package

Rust is usually built using a stage0 binary
downloaded during the build process. Yuck.

No way around it - must be built using an
existing Rust compiler built “somehow.”

Whither stage0?

● Download during build
● Bundle pre-built stage0 in Debian source

package
● Use previous rustc package and iterate as

often as required

Bootstrapping: The first package

debian/control

dpkg-buildpackage -Pstage1
● Build stage1 rustc-bootstrap.deb using non-Debian

rustc
● Build regular rustc.deb using rustc-bootstrap

Source: rust
Build-Depends: rustc

Package: rustc

Source: rust
Build-Depends:
 rustc <!stage1> | rustc-bootstrap <!stage1>

Package: rustc

Package: rustc-bootstrap

Bootstrapping: Debian details

debian/rules

ifneq (,$(findstring stage1,$(DEB_BUILD_PROFILE)))

 DEB_MAKE_BUILD_TARGET = rustc-stage1

 DEB_MAKE_CHECK_TARGET = check-stage1-rpass

 DH_OPTIONS += --package=rustc-bootstrap

endif

Bootstrapping new architecture

● Assume rustc can cross-compile to target
● dpkg --add-architecture s390x

apt-get source --compile \

 --host-architecture s390x \

 --build-profiles stage1

● Basically these set DEB_BUILD_* and DEB_TARGET_*
environment variables before invoking debian/rules

More Information

● https://wiki.debian.org/DebianBootstrap

● https://wiki.linaro.org/Platform/DevPlatform/CrossCompile/CrossBuilding

https://wiki.debian.org/DebianBootstrap
https://wiki.debian.org/DebianBootstrap
https://wiki.linaro.org/Platform/DevPlatform/CrossCompile/CrossBuilding
https://wiki.linaro.org/Platform/DevPlatform/CrossCompile/CrossBuilding

Rust the language

● Looks like C/C++
● Uses LLVM
● Types from Haskell, interfaces/channels from go, etc
● Strong ownership of data

○ Data lifetime built in to compiler
○ Move semantics by default

● All the cleverness is in the compiler
○ Very minimal runtime
○ The result can easily call to/from C, for example
○ Embedded, kernel modules, etc possible

Rust the language

Punting this part of the talk to Rust by example

See also http://rust-lang.org/ and Rust
Programming Language Book

http://rustbyexample.com/
http://rust-lang.org/
http://doc.rust-lang.org/book/
http://doc.rust-lang.org/book/
http://doc.rust-lang.org/book/

